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Abstract. Propagation of polymerization fronts with liquid monomer and solid polymer is considered, and the
influence of vibrations on critical conditions of convective instability is studied. The model includes the heat
equation, the equation for the concentration and the Navier-Stokes equations considered under the Boussinesq
approximation. Linear stability analysis of the problem is fulfilled, and the convective instability boundary is
found depending on the amplitude and on the frequency of vibrations.
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1. Introduction

There are various types of instabilities of reaction fronts, including thermo-diffusional insta-
bility, the hydrodynamical instability, and the convective instability.

The thermo-diffusional instability appears as a result of competition between the heat
production in the reaction zone and heat transfer to the cold reactants. To study this type
of instability, the density of the medium can be taken constant to remove the influence of
hydrodynamics and to symplify the model. The stability conditions in this case were studied
in [1–5].

A hydrodynamic instability, also called Darrieus-Landau instability, of the reaction front
can occur if the density of the medium is variable. Usually it is considered as a given func-
tion of the temperature. The instability is caused by heat expansion of the gas or liquid in a
neighbourhood of the reaction zone [6–10].

By convective instability, we mean that one which appears due to natural convection. This
instability can be studied in the pure form if we consider the Boussinesq approximation, i.e.,
we neglect the change of density everywhere except for the buoyancy term. The Boussinesq
approximation was justified and used to study the front stability in [4, 11].

It is known that vibrations can influence conditions of the hydrodynamic instability of
gaseous flames [19, 20], convective instability of directional solidification [17], [26] and crys-
tall growth [27–29]. In this work we study the influence of vibrations on convective instability
of polymerization fronts.

Convective instability of polymerization fronts without vibrations was studied in [12–16].
A typical example of polymerization front is shown in Figure 1. In this case the monomer is
liquid, the polymer is solid, and they are separated by a narrow reaction zone. This is a ther-
mal front, which propagates if the reaction is highly activated and exothermic. The exother-
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Figure 1. Propagation of a polymerization front with convection. The system consists of acrylamide dissolved in
dimethyl sulfoxide with 5% bis-acrylamide as a crosslinking agent and sodium persulfate as the initiator. Adapted
from [14].

mic reaction heats the liquid monomer from below. The critical conditions of appearance of
convection are determined by the frontal Rayleigh number,

R = gβqκ2

νc3
,

where g is the gravity acceleration, β the coefficient of thermal expansion, q the adiabatic heat
release, κ the coefficient of thermal conductivity, ν the kinematic viscosity, and c is a speed
of propagation of the front.

If the frontal Rayleigh number exceeds a critical value, then convection appears. Depend-
ing on values of the parameters, two different convective structures are observed [12–14].
One of them is antisymetric with one vortex (Figure 1), another one is axisymetric with two
vortices.

This work is devoted to the influence of vibration on polymerization fronts. Vibrations are
known to be among the most effective ways to affect the behaviour of a fluid. The periodic
oscillations of the containing vessel may influence the convective instability. In order to study
the influence of vibrations on the instability of a polymerization front, we impose a harmonic
oscillation of frequency σ , and amplitude λ in the vertical direction upon the system contain-
ing the liquid monomer and the solid polymer. This oscillation causes a periodic acceleration,
b, perpendicular to the liquid-solid interface. The time dependence of the instantaneous accel-
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eration acting on the fluids is then given by g + b(t), where b(t) = λ sin(σ t). In this work
we use the Boussinesq approximation, which takes into account the temperature dependence
of the density only in the volumetric forces.

This study is motivated by two types of applications. The first one is related to poly-
mer technologies: continuous polymerization reactors [22, 23] and reactive injection molding
(RIM) [24, 25]. Frontal polymerization is a simplified model of these processes where propa-
gation of a localized reaction zone can be studied independently of reactive flows. Vibrations
can be used to supress the convective instability or, inversly, to enforce it when we need to
mix the reactants.

This is a first step in studying vibration effects on polymerization fronts. Here we consider
the case with a solid product, which closely relates to RIM while the case with liquid product
is similar to adiabatic tubular reactors. We should distinguish between isothermal tubular
reactors and adiabatic ones. Some isothermal tubular reactors are over 1 km in length! The
former have little relation to frontal polymerization while the later ones are related but they
are rare.

The second application is connected with microgravity studies on frontal polymerization
[30–32]. Residual acceleration and vibrations, ‘g-jitter’, have been shown to affect many fluid
problems [33–36], and we should be able to estimate their impact.

There have been some experimental investigations on the effects of vibration on fluid
stability. Wolf studied the stabilization of the Rayleigh-Taylor instability by vibration [37]
as did Briskman [38].

Bowden et al. studied ascending fronts of free-radical acrylamide polymerization in dime-
thyl sulfoxide using persulfate as the thermal initiator. By adding ultrafine silica gel they could
systematically vary the viscosity [14]. The same system and procedures could be used with
the reactor attached to a vibration test stand.

The contents of this work are as follows. We introduce the model in Section 2 and reduce it
to a singular perturbation problem in Section 3. The linear stability of the interface problem is
fulfilled in Section 4. We discuss the results in Section 5. Conclusions are given in Section 6.

2. Governing equations

We consider the effect of periodic oscillations on propagating polymerization fronts. The
process is described by the system of equations:

∂T

∂t
+ v∇T = κ�T + qK(T )φ(α), (2.1)

∂α

∂t
+ v∇α = K(T )φ(α), (2.2)

∂v

∂t
+ (v∇) v = − 1

ρ
∇p + ν�v + g (1 + λ sin (σ t)) β (T − T0) γ, (2.3)

div v = 0, (2.4)

with the conditions at infinity:

T = Ti, α = 0 and v = 0, as z → +∞,
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and

T = Tb and v = 0, as z → −∞.

Here T is the temperature, α the depth of conversion, v = (
vx, vy, vz

)
the velocity of the

medium, p the pressure, κ the coefficient of thermal diffusivity, q the adiabatic temperature
rise, ρ an average value of density, ν the coefficient of kinematic viscosity, g the gravitational
acceleration, λ and σ stand for the amplitude and the frequency of vibrations, β the coefficient
of thermal expansion, and γ the unit vector in the z-direction (upward),

∇ =
(

∂

∂x
,
∂

∂y
,
∂

∂z

)
, � =

(
∂2

∂x2
,
∂2

∂y2
,
∂2

∂z2

)
,

x, y, z the spatial coordinates, −∞ < x, y, z < +∞, t time, T0 the mean value of temperature,
Ti is an initial temperature and Tb is the adiabatic temperature, Tb = Ti + q, W is the reaction
rate,

W = K(T )φ(α).

The temperature dependence of the reaction rate is given by the Arrhenius exponential,

K(T ) = k0 exp(−E/R0T ),

where E is the activation energy, R0 the gas constant and k0 the pre-exponential factor. For
the asymptotic analysis of the problem we will assume that the activation energy is large. We
consider a zero-order reaction,

φ(α) =
{

1 if α < 1,
0 if α = 1.

We introduce dimensionless spatial variables xc1/κ , yc1/κ , zc1/κ , time tc2
1/κ , velocity

v/c1 and pressure
p(
c2

1ρ
) . Here c1 = c/

√
2, c denotes the velocity of the propagation of the

stationary front, which can be calculated asymptotically for large Zeldovich number, Z =
qE

R0T
2
b

[39]:

c2 = 2k0κ

q

R0T
2
b

E
exp (−E/R0Tb) .

Denoting θ = (T − Tb) /q and keeping for convenience the same notation for other
variables, we rewrite the system (2.1)–(2.4) in the form:

∂θ

∂t
+ v∇θ = �θ + Z exp

(
θ

Z−1 + δθ

)
φ(α), (2.5)

∂α

∂t
+ v∇α = Z exp

(
θ

Z−1 + δθ

)
φ(α), (2.6)

∂v

∂t
+ (v∇) v = −∇p + P�v + PR (1 + λ sin (µt)) (θ + θ0) γ, (2.7)
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div v = 0, (2.8)

with the conditions:

z → +∞, θ = −1, α = 0, v = 0, (2.9)

z → −∞, θ = 0, v = 0. (2.10)

Here P is the Prandtl number, P = ν/κ; R is the frontal Rayleigh number, R = (
gβqκ2

)
/
(
νc3
)
,

δ = R0Tb/E, θ0 = (Tb − T0) /q, and µ = 2κ

c2
σ .

In the next section we reduce the problem to an interface problem. In the following sections
we fulfil its stability analysis.

3. Approximation of infinitely narrow reaction zone

To study the problem analytically we reduce it to a singular perturbation problem where the
reaction zone is supposed to be infinitely narrow, and the reaction term is neglected outside of
the reaction zone [18]. This is a conventional approach for combustion problems. We perform
a formal asymptotic analysis with ε = Z−1 = R0T

2
b /(qE) taken as a small parameter and

obtain a closed interface problem. In this section we do not assume that the product is solid.
Let ζ(x, y, t) denote the location of the reaction zone in the laboratory frame reference.

The new independent variable is given by

z1 = z − ζ(x, y, t).

We introduce new functions θ1, α1, v1, p1:

θ(x, y, z, t) = θ1(x, y, z1, t), α(x, y, z, t) = α1(x, y, z1, t),

v(x, y, z, t) = v1(x, y, z1, t), p(x, y, z, t) = p1(x, y, z1, t).

We rewrite the Equations (2.5)–(2.8) in the form (the index 1 for the new functions is omitted):

∂θ

∂t
− ∂θ

∂z1

∂ζ

∂t
+ v∇̃θ = �̃θ + Z exp

(
θ

Z−1 + δθ

)
φ(α), (3.1)

∂α

∂t
− ∂α

∂z1

∂ζ

∂t
+ v∇̃α = Z exp

(
θ

Z−1 + δθ

)
φ(α), (3.2)

∂v

∂t
− ∂v

∂z1

∂ζ

∂t
+
(
v∇̃
)
v = −∇̃p + P�̃v + Q(1 + λ sin (µt)) (θ + θ0) γ, (3.3)

∂vx

∂x
− ∂vx

∂z1

∂ζ

∂x
+ ∂vy

∂y
− ∂vy

∂z1

∂ζ

∂y
+ ∂vz

∂z1
= 0, (3.4)
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where

�̃ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
1

− 2
∂2

∂x∂z1

∂ζ

∂x
− 2

∂2

∂y∂z1

∂ζ

∂y
+

∂2

∂z2
1

((
∂ζ

∂x

)2

+
(
∂ζ

∂y

)2
)

− ∂

∂z1

(
∂2ζ

∂x2
+ ∂2ζ

∂y2

)
,

∇̃ =
(

∂

∂x
− ∂

∂z1

∂ζ

∂x
,
∂

∂y
− ∂

∂z1

∂ζ

∂y
,

∂

∂z1

)
, and Q = PR.

We use matched asymptotic expansions and seek the outer solution of the problem (3.1)–
(3.4) in the form of the expansion

θ = θ0 + εθ1 + ..., α = α0 + εα1 + ...,

v = v0 + εv1 + ..., p = p0 + εp1 + ....

To obtain the jump conditions in the reaction zone we consider the inner problem. The
stretched coordinate is η = z1/ε, ε = Z−1. We look for the inner solution in the form of the
expansion

θ = εθ̃1 + ..., α = α̃0 + εα̃1 + ..., (3.5)

v = ṽ0 + εṽ1 + ..., p = p̃0 + εp̃1 + ..., ζ = ζ 0 + εζ 1 + .... (3.6)

Substituting these expansions in (3.1)–(3.4), we obtain the leading-order inner problem:(
1 +

(
∂ζ 0

∂x

)2

+
(
∂ζ 0

∂y

)2
)

∂2θ̃1

∂η2
+ exp

(
θ̃1
)
φ(α̃0) = 0, (3.7)

−∂α̃0

∂η

∂ζ 0

∂t
− ∂α̃0

∂η

(
ṽ0
x

∂ζ 0

∂x
+ ṽ0

y

∂ζ 0

∂y
− ṽ0

η

)
= exp

(
θ̃1
)
φ(α̃0), (3.8)

(
1 +

(
∂ζ 0

∂x

)2

+
(
∂ζ 0

∂y

)2
)

∂2ṽ0

∂η2
= 0, (3.9)

−∂ṽ0
x

∂η

∂ζ 0

∂x
− ∂ṽ0

y

∂η

∂ζ 0

∂y
+ ∂ṽ0

η

∂η
= 0. (3.10)

The matching conditions are:
As η → +∞ :

θ̃1 ∼ θ1|z1=+0 +
(
∂θ0

∂z1

∣∣∣∣
z1=+0

)
η, α̃0 → 0, ṽ0 → v0|z1=+0, (3.11)
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as η → −∞ :
θ̃1 ∼ θ1|z1=−0, α̃0 → 1, ṽ0 → v0|z1=−0, (3.12)

From (3.9), we obtain

∂2ṽ0

∂η2
= 0.

Thus ṽ0(η) is a linear function of η. From the boundedness of the velocity it follows that it is
identically constant. We conclude that ṽ0 does not depend on η. From this conclusion and the
matching conditions it follows that the first term in the expansion of the velocity in the outer
problem, v0 is continuous.

We denote

s = ṽ0
x

∂ζ 0

∂x
+ ṽ0

y

∂ζ 0

∂y
− ṽ0

η.

From (3.10) it follows that the function s does not depend on η.
We derive next the jump conditions for the temprerature from (3.7), (3.8) in the same way

as it is usually done for combustion problems. From (3.8) it follows that α̃0 is a monotonic
function and 0 < α̃0 < 1. Since we consider a zero-order reaction, we have φ(α̃0) ≡ 1. We

conclude from (3.7) that θ̃1 is also monotonic. Thus, multiplying (3.7) by
∂θ̃1

∂η
and integrating,

we obtain:(
∂θ̃1

∂η

)2 ∣∣∣∣
∞

−
(
∂θ̃1

∂η

)2 ∣∣∣∣
−∞

= −2A−1 exp
(
θ1
)

(3.13)

where

A = 1 +
(
∂ζ 0

∂x

)2

+
(
∂ζ 0

∂y

)2

.

Subtracting (3.7) from (3.8) and integrating, we have

∂θ̃1

∂η

∣∣∣∣
∞

− ∂θ̃1

∂η

∣∣∣∣
−∞

= −A−1

(
∂ξ 0

∂t
+ s

)
. (3.14)

The two last Equations (3.13), (3.14) give the jump conditions for the temperature across the
front.

Using the matching conditions and truncating the expansion as:

θ0 ≈ θ, θ1|z1=−0 ≈ Zθ |z1=0, ζ 0 ≈ ζ, v0 ≈ v,

we can rewrite the jump conditions in the form (see [3], [4], [40] and references therein):

(
∂θ

∂z1

)2 ∣∣∣∣
+0

−
(

∂θ

∂z1

)2 ∣∣∣∣
−0

= 2Z

(
1 +

(
∂ζ

∂x

)2

+
(
∂ζ

∂y

)2
)−1

exp (Z θ |0) (3.15)
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∂θ

∂z1

∣∣∣∣
+0

− ∂θ

∂z1

∣∣∣∣
−0

= −
(

1 +
(
∂ζ

∂x

)2

+
(
∂ζ

∂y

)2
)−1 (

∂ζ

∂t
+
(
vx

∂ζ

∂x
+ ∂ζ

∂y
− vz

) ∣∣∣∣
z1=0

)
.

(3.16)

We recall that the jump conditions have been derived in the general case. We consider now
the case of the solid product where the velocity is zero behind the reaction zone, v ≡ 0 for
z1 < ζ . Thus, we have the following formulation of the problem:

z1 > ζ (liquid monomer):

∂θ

∂t
+ v∇θ = �θ, (3.17)

α = 0, (3.18)

∂v

∂t
+ (v∇) v = −∇p + P�v + Q(1 + λ sin (µt)) (θ + θ0) γ, (3.19)

div v = 0, (3.20)

z1 < ζ (solid polymer):

∂θ

∂t
= �θ, (3.21)

α = 1, v = 0, (3.22)

z1 = ζ (interface):

θ |ζ−0 = θ |ζ+0, (3.23)

∂θ

∂z1

∣∣∣∣
ζ−0

− ∂θ

∂z1

∣∣∣∣
ζ+0

=
(

1 +
(
ζ

′
x

)2 +
(
ζ

′
y

)2
)−1

∂ζ

∂t
, (3.24)

(
∂θ

∂z1

)2 ∣∣∣∣
ζ−0

−
(

∂θ

∂z1

)2 ∣∣∣∣
ζ+0

= −2Z

(
1 +

(
ζ

′
x

)2 +
(
ζ

′
y

)2
)−1

exp
(
Z θ |ζ

)
(3.25)

vx = vy = vz = 0. (3.26)

The conditions at infinity are

z1 = −∞ : θ = 0, v = 0; z1 = +∞ : θ = −1, v = 0. (3.27)

The problem is coupled in the sense that it describes the thermal instability of the reaction
front and the convective instability at the same time. There are different limiting cases here.
For example, if the coefficient of thermal expansion, β, is zero (i.e., R = 0) then we have,
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obviously, a pure problem of the reaction in a condensed medium, since v ≡ 0. Another
limiting case is when we remove the thermal instability: if the Zeldovich number is less than
a critical value, then there is no thermal instability, and it can be treated as a purely convective
instability.

4. Linear stability analysis

In this section we perform the linear analysis of the steady-state solution for the interface
problem (3.17)–(3.27).

This problem has a travelling wave solution:

θ (x, y, z1, t) = θs (z1 − u t) , α (x, y, z1, t) = αs (z1 − u t) , v = 0,

where

θs (z2, t) =
{

0 if z2 < 0
exp(−uz2) − 1 if z2 > 0

, (4.1)

and

αs (z2, t) =
{

1 if z2 < 0
0 if z2 > 0

, (4.2)

z2 = z1 − u t, u = c.

This is a stationary solution of the problem given by the Equations (3.18), (3.20), (3.22)–(3.27)
and

∂θ

∂t
+ v∇θ = �θ + u

∂θ

∂z2
, (4.3)

∂v

∂t
+ (v∇) v = −∇p + P�v + u

∂v

∂z2
+ Q(1 + λ sin (µt)) (θ + θ0) γ, (4.4)

for z2 > ξ,

∂θ

∂t
= �θ + u

∂θ

∂z2
, (4.5)

for z2 < ξ . Here ξ = ζ − u t .
We study the stability of this solution. We look for a solution of the problem in the form of

the perturbed stationary solution:

θ = θs + θ̃ , v = vs + ṽ, p = ps + p̃. (4.6)

We substitute (4.6) in (3.20), (4.3)–(4.5) and obtain for the first-order terms:
z2 > ξ :

∂θ̃

∂t
= �θ̃ + u

∂θ̃

∂z2
− ṽzθ

′
s , (4.7)
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Figure 2. Temperature maximum as a function of time for λ = 2, k = 1·5, P = 10 and µ = 10
(. . . R = 85, −−− R = 91·3 and −·− R = 95).

∂ṽ

∂t
= −∇p̃ + P�ṽ + u

∂ṽ

∂z2
+ Q(1 + λ sin (µt)) θ̃γ , (4.8)

div ṽ = 0,

z2 < ξ :

∂θ̃

∂t
= �θ̃ + u

∂θ̃

∂z2
. (4.9)

We denote θ̃ = θ̂1 for z2 < ξ and θ̃ = θ̂2 for z2 > ξ .
We now linearize the jump conditions. Taking into account that

θ |ξ±0 = θs(0) + ξθ
′
s(±0) + θ̃ (±0),

∂θ

∂z2

∣∣∣∣
ξ±0

= θ
′
s(±0) + ξθ

′′
s (±0) + ∂θ̃

∂z2

∣∣∣∣
ξ±0

,

we obtain up to the higher-order terms

[θ̂] = uξ, (4.10)
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Figure 3. Convective instability boundary: critical Rayleigh number as a function of the amplitude of vibrations
for P = 10, k = 1·5 and µ = 10.

[θ̂ ′ ] = −u2ξ − dξ

dt
, (4.11)

−u
(
u2ξ + θ̂

′
2(0)

)
= Zθ̂1(0). (4.12)

Here

[θ̂] = θ̂2(0) − θ̂1(0), [θ̂ ′ ] = θ̂
′
2(0) − θ̂

′
1(0), θ̂

′
i (0) = ∂θ̂i

∂z2

∣∣∣∣
z2=0

.

From (3.26) we have

∂vx

∂x
+ ∂vx

∂z

∂ξ

∂x
= 0,

∂vy

∂y
+ ∂vy

∂z

∂ξ

∂y
= 0.

Thus, using (3.20) we can rewrite the boundary conditions for the first-order terms in the form

v̂z = 0,
∂v̂z

∂z
= 0. (4.13)

We consider the perturbations in the form:

θ̂i = θi (z2, t) exp (i(k1x + k2y)) , i = 1, 2, (4.14)
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Figure 4. Convective instability boundary: critical Rayleigh number as a function of the amplitude of vibrations
for P = 10, k = 1·5 and µ = 15.

ṽ = v2 (z2, t) exp (i(k1x + k2y)) , z2 > ξ, (4.15)

ξ = ε1(t) exp (i(k1x + k2y)) . (4.16)

Here ε1 is the amplitude, k1 and k2 the wave numbers. We exclude the pressure p and the
components vx and vy of the velocity from the system (4.3)–(4.5) applying two times the
operator curl to the Navier-Stokes equations. Thus we can rewrite (4.3), (4.4) in the form

∂θ̃

∂t
− u

∂θ̃

∂z2
+ ṽzθ

′
s = �θ̃, (4.17)

∂

∂t
�ṽz − u

∂

∂z2
�ṽz = P��ṽz + Q

(
∂

∂x2
+ ∂

∂y2

)
θ̃ (1 + λ sin (µ t)) . (4.18)

Substituting (4.14), (4.15) in (4.17), (4.18) we obtain the system

∂θ

∂t
= θ

′′ + uθ
′ − k2θ + u exp(−uz2)v, (4.19)

∂

∂t

(
v

′′ − k2v
)

= P
(
v

′′′′ − 2k2v
′′ + k4v

)
+ u

(
v

′′′ − k2v
′)− PRk2 (1 + λ sin (µ t)) θ

(4.20)
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Figure 5. Convective instability boundary: critical Rayleigh number as a function of the amplitude of vibrations
for P = 10, k = 1·5 and µ = 20.

with the boundary conditions:

v (0, t) = v
′
(0, t) = 0, (4.21)

θ
′
(0, t) = −uθ (0, t) . (4.22)

Here k =
√
k2

1 + k2
2.

The boundary condition for the velocity follows directly from (4.13). To obtain (4.22),
we note first of all that the temperature perturbation behind the front, where the medium is
unmovable, satisfies the equation

∂θ1

∂t
= θ

′′
1 + uθ

′
1 − k2θ1.

We look for the solution in the form

θ1(z2, t) = θ1(z2)f (t)

and obtain

θ1(z2, t) = c1eωteµ1z2, µ1 = −u

2
−
√

u2

4
+ k2 + ω.
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Figure 6. Convective instability boundary: critical Rayleigh number as a function of the amplitude of vibrations
for P = 10, k = 2, 1.µ = 5, 2.µ = 10, 3.µ = 15 and 4.µ = 60.

We recall that there are two basic types of instability. In the first case a pair of complex
conjugate eigenvalues cross the imaginary axis resulting in a Hopf bifurcation. In the second
case, which we consider here, an eigenvalue crosses the imaginary axis through zero. Hence
in this case ω = 0 at the stability boundary.

We obtain from (4.11), (4.12) for ω = 0:

−u

(
µ1c1 − dξ

dt

)
= Zc1.

Since two terms in this equation do not depend on t , we conclude that ξ(t) = const.
Thus from the same equation

c1 (Z + uµ1) = 0.

Since Z is a large parameter and u ≈ 1, thus generally speaking Z �= −uµ1 and, consequently,
c1 = 0. From (4.10), (4.11) we obtain (4.22).

This analysis allows us to conclude that there is no temperature perturbation behind the
front, and that the reaction zone remains unmovable. This conclusion was first drawn in [15]
for the case without vibrations. We see that it remains valid for the case with vibrations though
a priori it is not clear whether it is so.
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Figure 7. Convective instability boundary: critical Rayleigh number as a function of the amplitude of vibrations
for P = 10, µ = 25, (−−− k = 1·5,−·− k = 2).

5. Numerical results

To find the convective instability boundary, we solve numerically the problem (4.19)−(4.22).
We describe briefly the numerical method. We reduce the problem (4.19) − (4.22) to the
problem

∂θ

∂t
= θ

′′ + uθ
′ − k2θ + u exp(−uz)v, (5.1)

∂ω

∂t
= Pω

′′ + uω
′ − Pk2ω + PRk2(1 + ε sin(µt))θ

0 = v
′′ − k2v + ω,

in the interval 0 ≤ x ≤ L, with the boundary conditions

x = 0 : θ ′ = −uθ, v = v′ = 0,

x = L : θ = v = ω = 0.
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Figure 8. Convective instability boundary: critical Rayleigh number as a function of the amplitude of vibrations
for k = 2, µ = 30 (−·− P = 10,−−− P = 20).

We note that there are two boundary conditions for the velocity at x = 0 and there is no
boundary condition for the vorticity ω. To avoid this difficulty we use a conventional approch
introducing an artificial second-order boundary condition for the vorticity (see [41]):

2ω1 + ω2 = −6v2

h2
. (5.2)

Here the index 1 corresponds to the first discretization point and 2 to the second points; h

is the space step. We use a finite-difference approximation with implicit scheme except for
the boundary condition (5.2) where the velocity v is taken from the previous time step. The
numerical accuracy is controled by decreasing the time and space steps. We verify that the
results do not depend on the length L of the interval.

For fixed Z and P we vary R. If the Rayleigh number R is less than a critical value Rcr,
then solution is decreasing in time (Figure 2). If R > Rcr, it increases, and for R = Rcr it is
periodic in time.

Figures 3−5 show the critical value of the Rayleigh number as a function of the amplitude
of vibrations for different frequencies. If λ = 0, we obtain the same value Rcr ≈ 70 as without
vibrations [15, 16]. For small positive λ vibrations stabilize the solution: Rcr is an increasing
function. For larger λ there appears a decreasing branch of the stability boundary (Figure 3).
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It corresponds to a parametric instability where vibrations with high amplitude destabilize the
front.

We note that these two branches have the same asymptotic behavior for large R but they
do not coincide. It can be seen also in Figure 4 where there are already three branches of the
stability boundary. The intermediate branch descends as µ increases (Figure 5). For this value
of frequency we have found also a very narrow stability region located between two almost
coinciding curves. It is connected with the main stability region for large values of λ. In terms
of eigenavalues, the interpretation of this diagram is as follows. If we fix λ and increase R from
zero, then the stationary solution loses its stability when R crosses the stability boundary for
the first time. For this value of R, the eigenvalue with the maximal real part crosses 0. For
larger values of R it crosses 0 again, but this time from the right-half plane to the left-half
plane. The stationary solution becomes stable. Finally it crosses 0 for the third time, which
makes the solution unstable again.

Figure 6 shows the stability boundary for another value of k. Increase of frequency of
vibrations makes the front more stable.

Dependence of the critical Rayleigh number on the wave number is shown in Figure 7. We
can see that main parametric instability region remains practically the same. For k = 2 and
large R there is another parametric instability region. For k = 1·5 this region increases and
leaves a very narrow strip near the main instability domain where the front is stable.

We discuss finally dependence of the stability conditions on the Prandtl number. We note
that two terms in (4.20) depend on it. An increase P in the first term corresponds to increasing
the viscosity which has a stabilizing effect. Increasing of P in the last term corresponds to an
increase of the external force, which destabilizes the front.

In the case without vibrations the sum of these two phenomena make the front less stable.
However, for P > 2 the stability boundary is practically independent of it [16].

In the case with vibrations the convective instability region (small amplitudes) increases
with P and the front is less stable (Figure 8). The main parametric instability region also
increases. However for P = 10 there is another parametric instability region, which appears
between the convective and the main parametric instability regions.

6. Conclusion

In this work we have studied the influence of vibrations on the convective instability of a
polymerization front with a liquid monomer and a solid polymer. For the front propagating
upwards, the exothermic chemical reaction heats the liquid reactant from below. If the frontal
Rayleigh number exceeds a critical value, the plane front loses its stability, and a propagating
convective front bifurcates. This phenomenon is studied experimentally in [13, 14].

Vibrations can change the onset of convection. To study their influence we consider the
model consisting of reaction-diffusion equations coupled with the Navier-Stokes equations
under the Boussinesq approximation. Vibrations are taken into account through the buoyancy
term, where the gravity acceleration depends periodically on time.

For a linear stability analysis we use the infinitely narrow reaction zone method developed
by Zeldovich and Frank-Kamenetski [18] and used for various combustion problems (see
[1–7]). In this method it is assumed that the reaction occurs at a surface separating original
reactants and the product of the reaction. The nonlinear reaction term is neglected outside
the reaction zone, and the problem is completed by nonlinear jump conditions. The moving-
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boundary problem has a travelling-wave solution that can be found explicitly. Linearizing the
problem about it, we obtain an eigenvalue problem with time-dependent coefficients. We solve
it numerically and find the stability boundary.

The stability conditions can be formulated in terms of the frontal Rayleigh number. If it
exceeds a critical value Rc the convection appears. The critical Rayleigh number depends on
the amplitude λ and on the frequency µ of vibrations. For small amplitudes Rc increases with
λ, i.e., vibrations stabilize the front. The structure of the stability rigion is rather complex:
there exists a narrow stability region even for a very high values of the Rayleigh number.

For larger amplitudes there appears another branch of the stability boundary. It corresponds
to the so-called parametric instability, and it decreases with λ. The parametric instability is
also very sensitive to parameters. The corresponding stability boundary can contain several
disjoint parts.

Increasing of the frequency of vibrations stabilizes the front with respect to the convective
instability (first branch of the stability boundary). The dependence of the parametric instability
on the frequency is complex.

We note finally that the case where the polymer is liquid is essentially different from the
case of a solid polymer considered in this work. The most essential difference is that the
convective instability exists for descending fronts and not only for ascending ones as in the
case of a solid product of reaction [15]. The influence of vibrations in this case has not yet
been studied and it can be also different.
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